Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.420
1.
Enferm. foco (Brasília) ; 15: 1-7, maio. 2024. ilus, tab
Article Pt | LILACS, BDENF | ID: biblio-1553744

Objetivo: Desenvolver um aplicativo móvel de auxílio à captação de materiais recicláveis. Métodos: Estudo metodológico, de desenvolvimento tecnológica centrado no usuário, realizado entre março e dezembro de 2020, a partir de cinco fases sequenciais: reconhecimento do contexto; idealização; prototipação; teste de usabilidade, complementado por um processo de validação e implementação. Participaram dessa produção tecnológica pesquisadores, desenvolvedores e integrantes de uma Associação de Materiais Recicláveis de Santa Maria, RS, Brasil. Resultados: As três fases iniciais resultaram num protótipo de aplicativo móvel. Na fase do teste de usabilidade verificouse, por meio de simulação intuitiva do protótipo, que o aplicativo é de manejo acessível, rápido e prático, podendo ser acessado por qualquer cidadão que dispõem de celular. Constatou-se, no processo de validação, que o dispositivo possui os requisitos necessários para o adequado funcionamento e interlocução entre doadores e associações receptoras de materiais recicláveis. Está disponível online após obter registro no Instituto Nacional da Propriedade Industrial. Conclusão: Revela-se que o desenvolvimento centrado no usuário é uma estratégia que amplia a difusão de conhecimento, possibilita a inclusão social e favorece o empoderamento. Como tecnologia social, o dispositivo móvel é capaz de potencializar melhores condições de trabalho e renda às associações de reciclagem. (AU)


Objective: To develop a mobile application to help the collection of recyclable materials. Methods: This is a methodological study, of user-oriented technological production, carried out between March and December 2020, from five phases: context recognition; idealization; prototyping; usability testing, complemented by a process of validation and implementation. Researchers, developers, and members of a Recyclable Materials Association in Santa Maria, RS, Brazil, participated in the collaborative production. Results: The three initial phases resulted in a prototype mobile application. In the usability test phase it was verified, through intuitive simulation of the prototype, that the application is accessible, fast and practical, and can be accessed by any citizen with a cell phone. It was verified, in the validation process, that the device has the necessary requirements for the proper functioning and dialogue between donors and associations that receive recyclable materials. It is available online after being registered with the National Institute of Industrial Property. Conclusion: It is revealed that user-centered development is a strategy that expands the dissemination of knowledge, enables social inclusion, and favors empowerment. As a social technology, the mobile device is capable of potentiating better work and income conditions for recycling associations. (AU)


Objetivo: Desarrollar una aplicación móvil para ayudar a capturar materiales reciclables. Métodos: Consiste en un estudio metodológico de producción tecnológica orientada hacia el usuario, ocurrido entre marzo y diciembre de 2020, basado en cinco fases: reconocimiento del contexto; idealización; creación de prototipos; prueba de usabilidad, complementada un proceso de validación e implementación. Participaron en la producción colaborativa investigadores, desarrolladores y miembros de una Asociación de Materiales Reciclables de Santa María, RS, Brasil. Resultados: Las tres fases iniciales resultaron en un prototipo de aplicación móvil. En la fase de prueba de usabilidad, se verificó, por medio de una simulación intuitiva del prototipo, que la aplicación es de uso accesible, rápida y práctica, y puede ser accedida por cualquier ciudadano que disponga de un teléfono celular. Se constató, en el proceso de validación, que el dispositivo cuenta con los requisitos necesarios para el correcto funcionamiento y diálogo entre donantes y asociaciones receptoras de materiales reciclables. Está disponible en línea tras obtener el registro en el Instituto Nacional de Propiedad Industrial. Conclusión: Resulta que el desarrollo centrado en el usuario es una estrategia que amplía la difusión del conocimiento, posibilita la inclusión social y favorece el empoderamiento. Como tecnología social, el dispositivo móvil es capaz de mejorar las condiciones laborales y los ingresos de las asociaciones de reciclaje. (AU)


Mobile Applications , Public Health , Nursing , Recycling , Culturally Appropriate Technology
2.
Molecules ; 29(7)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38611724

In this study, oxidized single-walled carbon nanohorns (oxSWCNHs) were prepared using nitric acid oxidation and subsequently combined with 3'6-carboxyfluorescein through charge transfer to prepare fluorescent probes. These oxSWCNHs were used to quench fluorogen signals at short distances and dissociate ssDNA using cryonase enzymes. We established a method for rapidly detecting tetracycline (TC) in complex samples based on the amplification of cryonase enzyme signals. After optimizing the experimental conditions, our method showed a detection limit of 5.05 ng/mL, with good specificity. This method was used to determine the TC content in complex samples, yielding a recovery rate of 90.0-103.3%. This result validated the efficacy of our method in detecting TC content within complex samples.


Heterocyclic Compounds , Tetracycline , Anti-Bacterial Agents , Recycling , Carbon , DNA, Single-Stranded
3.
PLoS One ; 19(4): e0294179, 2024.
Article En | MEDLINE | ID: mdl-38630697

This study investigated the suitability of recycled asphalt pavement and polyethylene wastes as coarse aggregate in asphaltic concrete by evaluating the impact of the use of polyethylene polymer wastes and recycled asphalt pavement composite as aggregates on the physical and mechanical properties of the asphaltic concrete. The physical characteristics of the aggregate and bitumen were determined using relevant parametric tests. Recycled asphalt pavement was used to make asphaltic concrete samples using LDPE at 5%, 10%, 15%, RAP at 5% and HDPE at 5%, 10%, 15%, and a mixture of LDPE + HDPE at 5+5%, 7.5+7.5% and 10+10% RAP at 5% as additives. Marshall Stability test was conducted to assess the mechanical strength of the asphaltic concrete, and the results included information on the aggregate's stability, flow, density, voids filled with bitumen, voids filled with air, and voids in mineral aggregate. In addition, the surface and crystal structure of the aggregates was studied by carrying out a microscopic examination with a Scanning Electron Microscope (SEM) and X-Ray diffraction (XRD). The results obtained from this study demonstrated that RAP, HDPE & LDPE are viable conventional aggregate substitute for asphalt concrete production.


Construction Materials , Polyethylene , Recycling/methods , Hydrocarbons/chemistry
4.
Environ Sci Technol ; 58(15): 6457-6474, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38568682

The circular economy (CE) aims to decouple the growth of the economy from the consumption of finite resources through strategies, such as eliminating waste, circulating materials in use, and regenerating natural systems. Due to the rapid development of data science (DS), promising progress has been made in the transition toward CE in the past decade. DS offers various methods to achieve accurate predictions, accelerate product sustainable design, prolong asset life, optimize the infrastructure needed to circulate materials, and provide evidence-based insights. Despite the exciting scientific advances in this field, there still lacks a comprehensive review on this topic to summarize past achievements, synthesize knowledge gained, and navigate future research directions. In this paper, we try to summarize how DS accelerated the transition to CE. We conducted a critical review of where and how DS has helped the CE transition with a focus on four areas including (1) characterizing socioeconomic metabolism, (2) reducing unnecessary waste generation by enhancing material efficiency and optimizing product design, (3) extending product lifetime through repair, and (4) facilitating waste reuse and recycling. We also introduced the limitations and challenges in the current applications and discussed opportunities to provide a clear roadmap for future research in this field.


Data Science , Waste Management , Recycling
5.
Waste Manag ; 180: 115-124, 2024 May 15.
Article En | MEDLINE | ID: mdl-38564912

In this study, the waste generation at the educational institutes chosen from four different levels (kindergartens, primary, secondary and high schools) in Istanbul was measured on-site and the contents of the waste thrown into the recycling bins were determined to specify capture rates. Separation and weighing processes were performed at 16 spots in high schools, 12 spots in secondary schools, 7 spots in primary schools and 7 spots in kindergartens. A survey was conducted to determine the students' awareness of recycling in these schools. It was revealed that the wastes produced from educational institutes are organics (36.4 %), paper (24 %), plastics (14.4 %), glass (8.1 %), metals (4.8 %) and miscellaneous (12.3 %). The survey results indicate that 93 % of the participants think recycling is important, 71 % of them throw their waste into suitable waste bins and 59 % of them know the location of the recycling bins. At the primary school level, a very high rate of paper waste (92.3 %) was reported in plastic bins while plastic waste collected in these bins remained only 5.7 %. It was also seen that glass waste captured in glass bins and metal waste in metal bins remain very low rates (20.9 % and 29.2 %, respectively) at the secondary school level. At the high school level, it was determined that the most commonly captured wastes in glass, plastics and paper bins are glass (47.5 %), plastic (43.2 %) and paper (32.5 %), respectively. Correlation analyses indicated a high positive correlation (p < 0.05) between particular types of waste.


Plastics , Waste Management , Humans , Recycling , Students , Schools
6.
Waste Manag ; 180: 96-105, 2024 May 15.
Article En | MEDLINE | ID: mdl-38564915

The growing electric vehicle industry has increased the demand for raw materials used in lithium-ion batteries (LIBs), raising concerns about material availability. Froth flotation has gained attention as a LIB recycling method, allowing the recovery of low value materials while preserving the chemical integrity of electrode materials. Furthermore, as new battery chemistries such as lithium titanate (LTO) are introduced into the market, strategies to treat mixed battery streams are needed. In this work, laboratory-scale flotation separation experiments were conducted on two model black mass samples: i) a mixture containing a single cathode (i.e., NMC811) and two anode species (i.e., LTO and graphite), simulating a mixed feedstock prior to hydrometallurgical treatment; and ii) a graphite-TiO2 mixture to reflect the expected products after leaching. The results indicate that graphite can be recovered with > 98 % grade from NMC811-LTO-graphite mixtures. Additionally, it was found that flotation kinetics are dependent on the electrode particle species present in the suspension. In contrast, the flotation of graphite from TiO2 resulted in a low grade product (<96 %) attributed to the significant entrainment of ultrafine TiO2 particles. These results suggest that flotation of graphite should be preferably carried out before hydrometallurgical treatment of black mass.


Graphite , Lithium , Recycling/methods , Electric Power Supplies , Ions
7.
J Environ Manage ; 357: 120774, 2024 Apr.
Article En | MEDLINE | ID: mdl-38569265

The booming electric vehicle market has led to an increasing number of end-of-life power batteries. In order to reduce environmental pollution and promote the realization of circular economy, how to fully and effectively recycle the end-of-life power batteries has become an urgent challenge to be solved today. The recycling & remanufacturing center is an extremely important and key facility in the recycling process of used batteries, which ensures that the recycled batteries can be handled in a standardized manner under the conditions of professional facilities. In reality, different adjustment options for existing recycling & remanufacturing centers have a huge impact on the planning of new sites. This paper proposes a mixed-integer linear programming model for the siting problem of battery recycling & remanufacturing centers considering site location-adjustment. The model allows for demolition, renewal, and new construction options in planning for recycling & remanufacturing centers. By adjusting existing sites, this paper provides an efficient allocation of resources under the condition of meeting the demand for recycling of used batteries. Next, under the new model proposed in this paper, the uncertainty of the quantity and capacity of recycled used batteries is considered. By establishing different capacity conditions of batteries under multiple scenarios, a robust model was developed to determine the number and location of recycling & remanufacturing centers, which promotes sustainable development, reduces environmental pollution and effectively copes with the risk of the future quantity of used batteries exceeding expectations. In the final results of the case analysis, our proposed model considering the existing sites adjustment reduces the cost by 3.14% compared to the traditional model, and the average site utilization rate is 15.38% higher than the traditional model. The results show that the model has an effective effect in reducing costs, allocating resources, and improving efficiency, which could provide important support for decision-making in the recycling of used power batteries.


Electric Power Supplies , Recycling , Uncertainty , Recycling/methods , Environmental Pollution , Electricity
8.
Waste Manag ; 180: 149-161, 2024 May 15.
Article En | MEDLINE | ID: mdl-38569437

Gold tailings are characterized by low-grade, complex composition, fine embedded particle size, environmental pollution, and large land occupation. This paper describes the mineralogical properties of gold tailings, including chemical composition, phase composition, particle size distribution, and microstructure; summarizes the recycling and utilization of components such as mica, feldspar, and valuable metals in gold tailings; reviews harmless treatment measures for harmful elements in gold tailings; and adumbrated the research progress of gold tailings in the application fields of building materials, ceramics, and glass materials. Based on these discussions, a new technology roadmap that combines multistage magnetic separation and cemented filling is proposed for the clean utilization of all components of gold tailings.


Environmental Pollution , Gold , Ceramics , Recycling , Particle Size
9.
PLoS One ; 19(4): e0302176, 2024.
Article En | MEDLINE | ID: mdl-38635601

As one of the key materials used in the civil engineering industry, concrete has a global annual consumption of approximately 10 billion tons. Cement and fine aggregate are the main raw materials of concrete, and their production causes certain harm to the environment. As one of the countries with the largest production of industrial solid waste, China needs to handle solid waste properly. Researchers have proposed to use them as raw materials for concrete. In this paper, the effects of different lithium slag (LS) contents (0%, 10%, 20%, 40%) and different substitution rates of recycled fine aggregates (RFA) (0%, 10%, 20%, 30%) on the axial compressive strength and stress-strain curve of concrete are discussed. The results show that the axial compressive strength, elastic modulus, and peak strain of concrete can increase first and then decrease when LS is added, and the optimal is reached when the LS content is 20%. With the increase of the substitution rate of RFA, the axial compressive strength and elastic modulus of concrete decrease, but the peak strain increases. The appropriate amount of LS can make up for the mechanical defects caused by the addition of RFA to concrete. Based on the test data, the stress-strain curve relationship of lithium slag recycled fine aggregate concrete is proposed, which has a high degree of agreement compared with the test results, which can provide a reference for practical engineering applications. In this study, LS and RFA are innovatively applied to concrete, which provides a new way for the harmless utilization of solid waste and is of great significance for the control of environmental pollution and resource reuse.


Waste Management , Waste Management/methods , Lithium , Solid Waste , Construction Materials , Recycling/methods , Industrial Waste/analysis
10.
PeerJ ; 12: e17281, 2024.
Article En | MEDLINE | ID: mdl-38680897

COVID-19 has a deep impact on the economic, environmental, and social life of the global population. Particularly, it disturbed the entire agriculture supply chain due to a shortage of labor, travel restrictions, and changes in demand during lockdowns. Consequently, the world population faced food insecurity due to a reduction in food production and booming food prices. Low-income households face food security challenges because of limited income generation during the pandemic. Thus, there is a need to understand comprehensive strategies to meet the complex challenges faced by the food industry and marginalized people in developing countries. This research is intended to review the agricultural supply chain, global food security, and environmental dynamics of COVID-19 by exploring the most significant literature in this domain. Due to lockdowns and reduced industrial production, positive environmental effects are achieved through improved air and water quality and reduced noise pollution globally. However, negative environmental effects emerged due to increasing medical waste, packaging waste, and plastic pollution due to disruptions in recycling operations. There is extensive literature on the effects of COVID-19 on the environment and food security. This study is an effort to review the existing literature to understand the net effects of the pandemic on the environment and food security. The literature suggested adopting innovative policies and strategies to protect the global food supply chain and achieve economic recovery with environmental sustainability. For instance, food productivity should be increased by using modern agriculture technologies to ensure food security. The government should provide food to vulnerable populations during the pandemic. Trade restrictions should be removed for food trade to improve international collaboration for food security. On the environmental side, the government should increase recycling plants during the pandemic to control waste and plastic pollution.


Agriculture , COVID-19 , Food Security , Food Supply , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Humans , Agriculture/economics , Food Supply/economics , SARS-CoV-2 , Pandemics/prevention & control , Pandemics/economics , Recycling , Environment
11.
Molecules ; 29(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38675609

This first study investigated the presence of dioxins and furans in river sediments around a craft village in Vietnam, focusing on Secondary Steel Recycling. Sediment samples were collected from various locations along the riverbed near the Da Hoi Secondary Steel Recycling village in Bac Ninh province. The analysis was conducted using a HRGC/HRMS-DFS device, detecting a total of 17 dioxin/furan isomers in all samples, with an average total concentration of 288.86 ng/kg d.w. The concentrations of dioxin/furan congeners showed minimal variation among sediment samples, ranging from 253.9 to 344.2 ng/kg d.w. The predominant compounds in the dioxin group were OCDD, while in the furan group, they were 1,2,3,4,6,7,8-HpCDF and OCDF. The chlorine content in the molecule appeared to be closely related to the concentration of dioxins and their percentage distribution. However, the levels of furan isomers did not vary significantly. The distribution of these compounds was not dependent on the flow direction, as they were mainly found in solid waste and are not water-soluble. Although the hepta and octa congeners had high concentrations, when converted to TEQ values, the tetra and penta groups (for dioxins) and the penta and hexa groups (for furans) contributed more to toxicity. Furthermore, the source of dioxins in sediments at Da Hoi does not only originate from steel recycling production activities but also from other combustion sites. The average total toxicity was 10.92 ng TEQ/kg d.w, ranging from 4.99 to 17.88 ng TEQ/kg d.w, which did not exceed the threshold specified in QCVN 43:2017/BTNMT, the National Technical Regulation on Sediment Quality. Nonetheless, these levels are still concerning. The presence of these toxic substances not only impacts aquatic organisms in the sampled water environment but also poses potential health risks to residents living nearby.


Dioxins , Environmental Monitoring , Furans , Geologic Sediments , Rivers , Steel , Water Pollutants, Chemical , Rivers/chemistry , Vietnam , Geologic Sediments/chemistry , Geologic Sediments/analysis , Dioxins/analysis , Steel/chemistry , Water Pollutants, Chemical/analysis , Furans/analysis , Furans/chemistry , Environmental Monitoring/methods , Recycling
12.
Environ Int ; 186: 108609, 2024 Apr.
Article En | MEDLINE | ID: mdl-38579452

Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e., PPD-Qs). In this study, 115 dust and 42 hand wipe samples collected from an e-waste recycling industrial park in central China were analyzed for 19 AAs and 6 PPD-Qs. Notably, the median concentration of ∑6PPD-Qs (1,110 ng/g and 1,970 ng/m2) was significantly higher (p < 0.05, Mann-Whitney U test) than that of ∑6PPDs (147 ng/g and 34.0 ng/m2) in dust and hand wipes. Among the detected analytes, 4-phenylaminodiphenylamine quinone (DPPD-Q) (median: 781 ng/g) and 1,4-Bis(2-naphthylamino) benzene quinone (DNPD-Q) (median: 156 ng/g), were particularly prominent, which were first detected in the e-waste dismantling area. Occupational exposure assessments and nuclear receptor interference ability, conducted through estimated daily intake (EDI) and molecular docking analysis, respectively, indicated significant occupational exposure to PPD-Qs and suggested prioritized Liver X receptors (LXRs) disruption potential of PPDs and PPD-Qs. The study provides the first evidence of considerable levels of AAs and PPD-Qs in the e-waste-related hand wipe samples and underscores the importance of assessing occupational exposure and associated toxicity effects.


Antioxidants , Dust , Electronic Waste , Occupational Exposure , Recycling , Occupational Exposure/analysis , Humans , Dust/analysis , China , Quinones/analysis , Amines/analysis
13.
Waste Manag ; 181: 20-33, 2024 May 30.
Article En | MEDLINE | ID: mdl-38574689

The transition towards Circular Economy (CE) is a promising approach to sustainable development that may cause significant social impacts. Despite the benefits of CE initiatives, key players such as informal recyclers face serious social issues such as poverty, lack of social security, and discrimination. Although evaluating social impacts remains a considerable challenge, Social Life Cycle Assessment (SLCA) is recognized as a suitable methodology with a life cycle perspective. While most SLCA experiences are conducted in the formal sector, it is important to consider the informal sector, which plays a crucial role in developing countries. This article presents an analysis of SLCA studies in informal recycling settings in order to identify the challenges and adjustments required for informal settings. The analysis is based on a literature review and a documentary review of a pilot application of SLCA in the informal recycling system in Cuenca, Ecuador. The results show that SLCA requires adaptation to be applied in informal settings. There are particular challenges in delineating boundaries due to the fuzzy nature and variability of informal activities. Tasks such as establishing specific indicators, developing reference scales and data collection, require careful planning and active stakeholder participation. For instance, indicators regarding Fair Salary or Working hours were adapted based on best practices. Furthermore, tasks such as verifying and disseminating results should be included in interpretation phases to generate long-term impacts and influence behaviors. The study underscores SLCA's multidimensional view but highlights the need for further standardization and adaptation for informal sectors.


Recycling , Recycling/methods , Humans , Ecuador , Informal Sector , Waste Management/methods , Sustainable Development
14.
Waste Manag ; 181: 68-78, 2024 May 30.
Article En | MEDLINE | ID: mdl-38593732

Electronic waste recycling companies have proliferated in many countries due to valuable materials present in end-of-life electronic and electrical equipment. This article examined the business characteristics and management performance of Electronic Products Recycling Association (EPRA), a Canadian nationwide electronic product stewardship organization. The organization's annual performance reports, from 2012 to 2020, for nine Canadian provinces in which it currently operates were aggregated and analyzed. Temporal analysis using regression and Mann-Kendall tests were employed, and five characteristics of EPRA's business were analyzed, including e-waste products collected, number of drop-off locations, efforts to build public awareness, operating expenses, and growth of e-waste stewardship. Results show a decline in the amount of e-waste collected across the provinces, except in New Brunswick, which started its program in 2017. The Mann-Kendall test revealed declining temporal trends in most provinces. Although the collection/drop off sites and stewardship organizations increased astronomically over the study period in Canada, the amounts of e-waste collected decreased. We found that public awareness generally did not increase the amount of e-waste collected, and these campaigns only appeared to be effective in jurisdictions with good accessibility of e-waste recycling. Processing cost accounted for the majority of the e-waste management budget in Canada, and different factors affected the financial success of the stewards differently.


Electronic Waste , Recycling , Waste Management , Recycling/methods , Canada , Waste Management/methods
15.
Waste Manag ; 181: 79-88, 2024 May 30.
Article En | MEDLINE | ID: mdl-38598882

There is little knowledge about microplastic (MP) pollution in plastic recycling facility (PRF) wastewater. In this study, MPs in the wastewaters of four PRFs located in Türkiye were characterized for size, shape, color, and polymer types after sieving from 5,000 µm to the lowest 75 µm with seven sieves. The wet peroxide oxidation procedure was applied before attenuated total reflectance fourier transform infrared spectroscopy analysis for polymer identification. Polyethylene, and polypropylene were the dominant (75 % of total count) MP types within 22 polymer types. Average hit qualities of polymers increased from 69 % to above 84 % for the device software (OPUS) and open software (OpenSpecy). The abundance of MPs was determined as 53,987 MPs/L and 0.8 g MP/L for mixed PRFs 7,582 MPs/L and 4.6 g/L for the LDPE recycling facility, and 2,196 MPs/L and 0.06 g MPs/L for the granulation cooling water by count and weight, respectively. Small-sized MPs are found in the bottom sample much more than the surface and effluent samples in the washing tank. This indicated that MPs adsorbed the pollutants settled in the washing tank due to adsorbed pollution/biofilm. A maximum of 4.6 kg MP/ton of plastic recycled can be discharged as MPs that can be recovered. Considering the plastics recycling capacity, discharged MPs in these PRFs are possibly above 30,000 tons.


Microplastics , Plastics , Recycling , Recycling/methods , Microplastics/analysis , Waste Management/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis
16.
Waste Manag ; 181: 168-175, 2024 May 30.
Article En | MEDLINE | ID: mdl-38615500

The recovery of valuable metals from used lithium batteries is essential from an environmental and resource management standpoint. However, the most widely used acid leaching method causes significant ecological harm. Here, we proposed a method of recovering Li and Fe selectively from used lithium iron phosphate batteries by using low-concentration organic acid and completing the closed-loop regeneration. Low-concentration oxalic acid is used to carry out PO43-, which is significantly less soluble in aqueous solution than Li, two-stage selective leaching Li, where the leaching rate of Li reaches 99 %, and the leaching rate of Fe is only 2.4 %. The leach solution is then decontaminated. The solubility of Li3PO4 in aqueous solution is much smaller than that of Li2C2O4, which was required to recover Li to change the pH and Li can be recovered as Li3PO4; Fe can be retrieved as FeC2O4·2H2O, and re-prepared into lithium iron phosphate.


Ferric Compounds , Lithium , Oxalic Acid , Phosphates , Recycling , Oxalic Acid/chemistry , Phosphates/chemistry , Lithium/chemistry , Recycling/methods , Iron/chemistry , Electric Power Supplies
17.
Environ Sci Pollut Res Int ; 31(20): 30126-30136, 2024 Apr.
Article En | MEDLINE | ID: mdl-38602641

Globally, per- and polyfluoroalkyl substances (PFAS)-related research on paper products has focused on food packaging with less consideration on the presence of PFAS at different stages of the paper recycling chain. This study analysed the prevalence of PFAS in paper grades used for the manufacture of recycled paperboard. The presence of PFAS was attributed to the use of PFAS-containing additives, consumer usage, exposure to packed goods as well as contamination during mingling, sorting, collection, and recovery of paper recycling material. Q Orbitrap mass spectrometry was used to analyse the paper samples after accelerated solvent extraction and solid phase extraction. The distribution and possible propagation of 22 PFAS were determined in pre-consumer, retail and post-consumer paper products. Post-consumer samples had the highest combined average concentration (ΣPFAS) at 213 ng/g, while the ΣPFAS in retail (159 ng/g) and pre-consumer samples (121 ng/g) was detected at lower concentrations. This study showed that waste collection and recycling protocols may influence PFAS propagation and that measures must be developed to minimise and possibly eliminate exposure opportunities.


Fluorocarbons , Mass Spectrometry , Paper , Recycling , Fluorocarbons/analysis , Chromatography, High Pressure Liquid , Solid Phase Extraction
19.
Environ Sci Pollut Res Int ; 31(19): 28835-28845, 2024 Apr.
Article En | MEDLINE | ID: mdl-38592624

One of the current important issues is the management of used textiles. One method is recycling, but the processes are characterized by a high environmental burden and the products obtained are of lower quality. Used textiles can be successfully used to produce SRF (solid recovered fuels). This type of fuel is standardized by ISO 21640:2021. In the paper, an analysis of used textiles made from fibers of different origins was performed. These were acrylic, cotton, linen, polyester, wool, and viscose. A proximate and ultimate analysis of the investigated samples was performed, including mercury and chlorine content. The alternative fuel produced from used textiles will be characterized by acceptable parameters for consumers: a lower heating value at 20 MJ/kg (class 1-3 SRF), mercury content below 0.9 µg Hg/MJ (class 1 SRF), and a chlorine content below 0.2% (class 1 SRF). However, the very high sulfur content in wool (3.0-3.6%) and the high nitrogen content in acrylic may limit its use for power generation. The use of alternative fuel derived from used textiles may allow 3% of the coal consumed to be substituted in 2030. The reduction in carbon dioxide emissions from the substitution of coal with an alternative fuel derived from used textiles will depend on their composition. For natural and man-made cellulosic fibers, the emission factor can be assumed as for plant biomass, making their use for SRF production preferable. For synthetic fibers, the emission factor was estimated at the level of 102 and 82 gCO2/MJ for polyester and acrylic, respectively.


Textiles , Recycling
20.
Sci Total Environ ; 928: 172375, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38604372

Using waste from sewage systems, particularly human excreta, could save resources and increase soil fertility, contributing to nutrient management. However, because of the pathogenic content in human feces, this resource can pose health risks to farmers and consumers. Therefore, this work analyzed the behavior of the microorganisms: Escherichia coli ATCC13706 and human adenovirus (HAdV-2) in the soil and the internal part of the plant tissue during the vegetative stage after applying spiked composted human feces as biofertilizer. In a greenhouse, we simulated the application of the biofertilizer in lettuce cultivation by spiking three concentrations of E. coli (6.58, 7.31, and 8.01 log10 CFU.g-1) and HAdV-2 (3.81, 3.97, and 5.92 log10 PFU.g-1). As a result, we achieved faster decay in soil at higher concentrations of E. coli. We estimated linear decay rates of -0.07279, -0.09092, and -0.115 days, corresponding to T90s of 13.7, 11.0, and 8.6 days from higher to smaller concentrations of E. coli, respectively. The estimated periods for the inactivation of 4 logarithmic units of E. coli bacteria in soil are longer than the cultivation period of lettuce for all concentrations studied. Concerning the bacterial contamination in plants, we found E. coli in the internal part of the leaves at the highest concentration tested during the first three weeks of the experiment. Furthermore, HAdV-2 was found in roots at a stable concentration of 2-2.3 log10 PFU.g-1 in five of the six samples analyzed. Therefore, bacterial infection could pose a risk, even if fresh greens are washed before consumption, especially for short-term cultures. Regarding viral infection, a positive result in the roots after disinfection may pose a risk to root and tubercule vegetables. These discoveries highlight the importance of conducting comprehensive evaluations of hygiene practices in incorporating organic amendments in crops, explicitly aiming to minimize the risk of post-contamination.


Adenoviruses, Human , Escherichia coli , Feces , Fertilizers , Lactuca , Soil Microbiology , Lactuca/microbiology , Lactuca/virology , Feces/microbiology , Feces/virology , Humans , Adenoviruses, Human/physiology , Crop Production/methods , Composting , Recycling , Soil/chemistry
...